Преподаватель сел, достал билеты, зашла первая пятерка студентов, и процесс пошел.
По воплям экзаменатора мы поняли, что наши самые тревожные ожидания оправдались. Человек оказался каким-то серьезным профессором и не мог спокойно слушать бред наших бедных студенток.
Это было жестокое побоище! Апофеоз настал, когда незнакомый нам злой экзаменатор заставил нашу Катю, пьющую девочку из очень далекой глубинки, написать синус в квадрате плюс косинус в квадрате.
Катя старательно вывела на доске каллиграфическим почерком слово «синус», обведя его таким же ровным красивым квадратом.
Как раз в этот момент в аудиторию заглянула староста группы. Оценив ситуацию, она вернулась в коридор, схватила меня и подтолкнула в аудиторию, заявив профессору, что я очень хочу отвечать без подготовки.
Экзаменатор согласно кивнул и показал рукой на стул перед ним. Я села, выбрала билет, стала отвечать. Он вытаращил глаза:
– Бери другой билет! Беру. Одна теорема, другая. Проверил меня на предмет наушников – а мне смешно. И давай меня грузить:
– А ну-ка, расскажи теорему косинусов – три доказательства, прямо сейчас? Так. А вот это? И так целый час. Но мне даже понравилось.
Было приятно что-то доказать этому дяде. В итоге удовлетворенный экзаменатор сел на свое место, достал мою зачетку и поставил «отлично».
Потом я узнала, что он даже на физмате девушкам больше четверки не ставил.
– И почему на вашем факультете все такие тупые? – вздохнул мужик. – Что конкретно вы здесь забыли?
– Мы не тупые, – ответила я. – У нас просто мышление по-другому устроено – творчески. И вообще математика для начальной школы иногда бывает сложнее, чем для высшей.
– Это как? – удивилось светило.
– А вот так! С этими словами я вернулась в коридор, взяла пакет с книгами, вытащила учебник по математике для четвертого класса, открыла, где была закладка.
– Решите вот эту задачку, – и отдала книгу профессору.
Он стал читать. Условия такие: от двух берегов большого озера навстречу друг другу плывут две лодки.
Между ними от одной лодки к другой плавает человек. Доплывет до лодки, разворачивается и обратно.
Чем дольше обе лодки в пути, тем сильнее сокращается дистанция пловца. Дано расстояние между берегами, скорость лодок, скорость пловца.
Вопрос: через какое время пловец остановится?
Дядя еще раз посмотрел на обложку учебника, схватил листок и карандаш. Сказал всей группе заходить и готовиться.
Все забежали, билеты выбрали и сели, счастливые, списывать. Мужик начал чертить какие-то иксы и игреки. Аж язык высунул от усердия.
На первый взгляд казалось, что, если сложить кусочки расстояния от пловца до лодок, можно добраться до сути, потом сложить отрезки времени, и получится правильное решение.
Но на деле на бумаге было слишком много расчетов, и в течение получаса профессор еще не пришел к ответу. И тогда я ему подсказала:
– Есть простая формула: расстояние делим на скорость, получаем время. Расстояние между берегами дано в задаче, скорость лодок – тоже.
Делим расстояние на скорость лодок и узнаем, когда они зажмут пловца – через пятнадцать минут. У препода челюсть отвисла:
– А как же пловец?
– А что пловец? – улыбнулась я, – раз лодки прижмут пловца через пятнадцать минут, то без разницы, какая у него была скорость.
Это просто лишние данные. Видите, задача-то со звездочкой – для самых умных деток в четвертом классе!
После этого я собрала вещи и смылась домой, оставив онемевшего профессора с остальными студентами. Как узнала позже, экзамен он принимал хорошо, двоек не ставил.
До конца экзамена просидел в ступоре.